All eukaryotic SMC proteins induce a twist of -0.6 at each DNA-loop-extrusion step

biorxiv(2024)

引用 0|浏览12
暂无评分
摘要
Eukaryotes carry three types of Structural Maintenance of Chromosomes (SMC) protein complexes, condensin, cohesin, and SMC5/6, which are ATP-dependent motor proteins that remodel the genome via DNA loop extrusion. SMCs modulate DNA supercoiling, but it has remained incompletely understood how this is achieved. Here we present a single-molecule magnetic tweezers assay that directly measures how much twist is induced by an individual SMC in each loop-extrusion step. We demonstrate that all three SMC complexes induce the same large negative twist (i.e., a linking number change Δ L k of -0.6 at each loop-extrusion step) into the extruded loop, independent of step size. Using ATP-hydrolysis mutants and non-hydrolysable ATP analogues, we find that ATP binding is the twist-inducing event during the ATPase cycle, which coincides with the force-generating loop-extrusion step. The fact that all three eukaryotic SMC proteins induce the same amount of twist indicates a common DNA-loop-extrusion mechanism among these SMC complexes. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要