Abstract 1118: Mitigating radiation-induced lymphopenia using interleukin-15: Preclinical rationale for clinical translation

Priti Gupta, Min Wang,Steven Lin

Cancer Research(2024)

引用 0|浏览0
暂无评分
摘要
Abstract Background: Radiation therapy is a common treatment for cancer patients, with nearly 50% of them undergoing this procedure. While radiation is effective at targeting tumor cells, it also has the unintended consequence of killing lymphocytes, which are among the most sensitive cells to radiation within the erythroid, myeloid, and lymphoid lineages. This phenomenon is known as radiation-induced lymphopenia (RIL) and is considered a negative prognostic factor in various malignant solid tumors. It occurs severely in over 40% of solid tumor patients who receive radiotherapy. Some previous studies have shown promising results with IL15 therapy in increasing circulating lymphocytes in cancer patients. However, until now, no studies have investigated the impact of IL15 in the context of radiation-induced lymphopenia. Our study aims to investigate whether IL15 can boost lymphocyte numbers and decrease tumor burden following radiation treatment in a mouse model. Methods: To conduct our study, we subcutaneously injected TSA tumor cells into the flank region of mice. Once the tumors reached a palpable size, approximately 50mm3, we divided the mice into four groups: Control (Con), Irradiation (IR), Control with IL15 (Con+IL15), and Irradiation with IL15 (IR+IL15). The irradiated mouse groups received a radiation dose of 2 Gray in the thorax and 1 Gray in the spleen for five consecutive days, simulating the severe radiation-induced lymphopenia observed in cancer patients. After the radiation treatment, the IL15-treated groups received IL15 in combination with recombinant IL15 in a 1:6 ratio weekly. Throughout the experiment, we monitored the circulating lymphocytes and tumor growth. After two weeks following the last radiation dose, we euthanized the mice, collected blood, spleen, and tumor samples, and identified immune cells using flow cytometry. Results: The radiation treatment significantly increased tumor growth while decreasing the number of lymphocytes, including B cells, T cells, and NK cells, in the blood. IL15 administration led to an increase in the number of lymphocytes both in the blood and within the tumor compared to the irradiated group. We observed a trend toward reduced tumor growth in the group that received both IL15 and radiation (IR+IL15) compared to the group that received radiation alone (IR). Conclusion: IL15 effectively boosted the number of lymphocytes in both the bloodstream and tumors, resulting in slower tumor growth in the IL15-treated group compared to the irradiated group. This study is of significant importance as it demonstrates the potential of IL15 to counteract radiation-induced lymphopenia in mice with TSA tumors. Further testing of these findings is currently underway in MC38 tumor-bearing mice, a cell line known to be more radiation-sensitive. Citation Format: Priti Gupta, Min Wang, Steven Lin. Mitigating radiation-induced lymphopenia using interleukin-15: Preclinical rationale for clinical translation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 1118.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要