Generative AI for designing and validating easily synthesizable and structurally novel antibiotics

Kyle Swanson,Gary Liu, Denise B. Catacutan, Autumn Arnold,James Zou,Jonathan M. Stokes

Nature Machine Intelligence(2024)

引用 0|浏览1
暂无评分
摘要
The rise of pan-resistant bacteria is creating an urgent need for structurally novel antibiotics. Artificial intelligence methods can discover new antibiotics, but existing methods have notable limitations. Property prediction models, which evaluate molecules one-by-one for a given property, scale poorly to large chemical spaces. Generative models, which directly design molecules, rapidly explore vast chemical spaces but generate molecules that are challenging to synthesize. Here we introduce SyntheMol, a generative model that designs new compounds, which are easy to synthesize, from a chemical space of nearly 30 billion molecules. We apply SyntheMol to design molecules that inhibit the growth of Acinetobacter baumannii , a burdensome Gram-negative bacterial pathogen. We synthesize 58 generated molecules and experimentally validate them, with six structurally novel molecules demonstrating antibacterial activity against A. baumannii and several other phylogenetically diverse bacterial pathogens. This demonstrates the potential of generative artificial intelligence to design structurally novel, synthesizable and effective small-molecule antibiotic candidates from vast chemical spaces, with empirical validation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要