Water-participated mild oxidation of ethane to acetaldehyde

Nature Communications(2024)

引用 0|浏览0
暂无评分
摘要
The direct conversion of low alkane such as ethane into high-value-added chemicals has remained a great challenge since the development of natural gas utilization. Herein, we achieve an efficient one-step conversion of ethane to C 2 oxygenates on a Rh 1 /AC-SNI catalyst under a mild condition, which delivers a turnover frequency as high as 158.5 h −1 . 18 O isotope-GC–MS shows that the formation of ethanol and acetaldehyde follows two distinct pathways, where oxygen and water directly participate in the formation of ethanol and acetaldehyde, respectively. In situ formed intermediate species of oxygen radicals, hydroxyl radicals, vinyl groups, and ethyl groups are captured by laser desorption ionization/time of flight mass spectrometer. Density functional theory calculation shows that the activation barrier of the rate-determining step for acetaldehyde formation is much lower than that of ethanol, leading to the higher selectivity of acetaldehyde in all the products.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要