Synergistic effect of electrical bias and proton irradiation on the electrical performance of β-Ga2O3 p–n diode

Applied Physics Letters(2024)

引用 0|浏览5
暂无评分
摘要
The synergistic impact of reverse bias stress and 3 MeV proton irradiation on the β-Ga2O3 p–n diode has been studied from the perspective of the defect in this work. The forward current density (JF) is significantly decreased with the increase in proton irradiation fluence. According to the deep-level transient spectroscopy results, the increase in the acceptor-like trap with an energy level of EC-0.75 eV within the β-Ga2O3 drift layer, which is most likely to be Ga vacancy-related defects, can be the key origin of the device degradation. The increase in these acceptor-like traps results in the carrier concentration reduction, which in turn leads to a decrease in JF. Furthermore, compared with the case of proton irradiation with no bias, the introduction of −100 V electrical stress induced a nearly double decrease in JF. Based on the capacitance–voltage (C–V) measurement, with the support of the electric field, the carrier removal rate increased from 335 to 600 cm−1. Similar to the above-mentioned phenomenon, the trap concentration also increased significantly. We propose a hypothesis elucidating the synergistic effect of electrical stress and proton irradiation through the behavior of recoil nuclei under the electric field.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要