3D-printed Al2O3 framework supported carbon-bridged tri-s-triazine of g-C3N4 for photocatalytic tetracycline oxidation

Chechia Hu,Lee-Lee Chang,Wei Chen, Wan-Yuan Hsu, Szu-Chia Chien,Chien-Hua Chen, Yu-Ting Lin, Tzu-Jung Hsu,Kuo-Lun Tung

Chemical Engineering Journal(2024)

引用 0|浏览0
暂无评分
摘要
Powder-like g-C3N4 has been widely used as a photocatalyst but exhibits several drawbacks, including unrecyclable, high charge recombination, and limited light absorption. In this study, carbon-bridged g-C3N4 was successfully prepared and coated on a 3D-printed Al2O3 substrate for the photocatalytic oxidation of tetracycline. Oxamide (OD), malonamide (MD), and succinamide (SD) were used as carbon-containing linkers to react with precursors (melamine and urea) and produce carbon-bridged g-C3N4. Carbon substitution at the bridged N atoms of g-C3N4 improved light absorption, reduced charge recombination, and resulted in high photocatalytic tetracycline removal efficiency. Computational calculations were also employed, and Bader charge analysis supported the charge redistribution and transfer of the carbon-bridged g-C3N4 samples. Our results indicated that the degradation of tetracycline followed step-by-step oxidation, deamination, and mineralization to form CO2 and H2O. The 3D-printed Al2O3-supported carbon-bridged g-C3N4 exhibited a high removal rate of 85–90 % and stability for photocatalytic reactions and can be reused for at least 10 cycles. This study demonstrates that the 3D-printed Al2O3-supported carbon-bridged g-C3N4 catalyst is an efficient and effective catalyst support system for photocatalytic reactions.
更多
查看译文
关键词
3D-printed Al2O3,Carbon-bridged g-C3N4,Photocatalysis,Tetracycline
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要