Time Series Representation Learning with Supervised Contrastive Temporal Transformer

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Finding effective representations for time series data is a useful but challenging task. Several works utilize self-supervised or unsupervised learning methods to address this. However, there still remains the open question of how to leverage available label information for better representations. To answer this question, we exploit pre-existing techniques in time series and representation learning domains and develop a simple, yet novel fusion model, called: Supervised COntrastive Temporal Transformer (SCOTT). We first investigate suitable augmentation methods for various types of time series data to assist with learning change-invariant representations. Secondly, we combine Transformer and Temporal Convolutional Networks in a simple way to efficiently learn both global and local features. Finally, we simplify Supervised Contrastive Loss for representation learning of labelled time series data. We preliminarily evaluate SCOTT on a downstream task, Time Series Classification, using 45 datasets from the UCR archive. The results show that with the representations learnt by SCOTT, even a weak classifier can perform similar to or better than existing state-of-the-art models (best performance on 23/45 datasets and highest rank against 9 baseline models). Afterwards, we investigate SCOTT's ability to address a real-world task, online Change Point Detection (CPD), on two datasets: a human activity dataset and a surgical patient dataset. We show that the model performs with high reliability and efficiency on the online CPD problem (∼98% and ∼97% area under precision-recall curve respectively). Furthermore, we demonstrate the model's potential in tackling early detection and show it performs best compared to other candidates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要