Diamond Micro-Chip for Quantum Microscopy

arxiv(2024)

引用 0|浏览4
暂无评分
摘要
The nitrogen vacancy (NV) center in diamond is an increasingly popular quantum sensor for microscopy of electrical current, magnetization, and spins. However, efficient NV-sample integration with a robust, high-quality interface remains an outstanding challenge to realize scalable, high-throughput microscopy. In this work, we characterize a diamond micro-chip (DMC) containing a (111)-oriented NV ensemble; and demonstrate its utility for high-resolution quantum microscopy. We perform strain imaging of the DMC and find minimal detrimental strain variation across a field-of-view of tens of micrometer. We find good ensemble NV spin coherence and optical properties in the DMC, suitable for sensitive magnetometry. We then use the DMC to demonstrate wide-field microscopy of electrical current, and show that diffraction-limited quantum microscopy can be achieved. We also demonstrate the deterministic transfer of DMCs with multiple materials of interest for next-generation electronics and spintronics. Lastly, we develop a polymer-based technique for DMC placement. This work establishes the DMC's potential to expand the application of NV quantum microscopy in materials, device, geological, biomedical, and chemical sciences.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要