In-situ mechanical and microstructural characterization of miniaturized Al-Mg-Sc-Zr and AlSi10Mg specimens processed by laser powder-bed fusion (PBF-LB)

Journal of Materials Research and Technology(2024)

引用 0|浏览1
暂无评分
摘要
Manufacturing through powder-bed fusion laser-beam (PBF-LB) enables innovative part design strategies, facilitating weight reduction, and capitalizing on the metallurgical conditions developed during the manufacturing of designed alloys. Consequently, Al-based light alloys hold enormous potential for reducing fuel consumption in the transport industry. Fabricating such small features has a significant impact on heat dissipation, thereby affecting microstructure, porosity, and, consequently, mechanical properties. This study proposes the use of near-net shape miniaturized tensile specimens in both horizontal and vertical orientations to characterize Al-Mg-Sc-Zr, commercially known as Scalmalloy®, and AlSi10Mg, two aluminum alloys typically employed in PBF-LB. The size and distribution of both grains and pores were analyzed and compared, with Al-Mg-Sc-Zr exhibiting a more competitive set of properties compared to AlSi10Mg. This difference also influences mechanical properties. Al-Mg-Sc-Zr demonstrated double the Ultimate Tensile Strength (UTS) of AlSi10Mg (450 MPa versus 225 MPa) and higher hardness values (142 HV30 versus 75 HV30), with similar elongation in both alloys (approximately 12–16%), owing to its fine microstructure and low porosity of the near-net shape miniaturized tensile specimens. Neither material exhibited any form of anisotropy. In-situ SEM tensile tests were conducted to monitor damage evolution, allowing continuous observation of crack nucleation and propagation through imperfections typically encountered in PBF-LB. Despite differences in static strength, the fracture surfaces of the samples displayed a ductile behavior in both materials.
更多
查看译文
关键词
Powder bed fusion laser-beam (PBF-LB),Anisotropy,Mechanical properties,Al-Mg-Sc-Zr,AlSi10Mg,Scalmalloy®
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要