Pandora: A Tool to Estimate Dimensionality Reduction Stability of Genotype Data

Julia Haag, Alexander I. Jordan,Alexandros Stamatakis

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
Motivation: Genotype datasets typically contain a large number of single nucleotide polymorphisms for a comparatively small number of individuals. To identify similarities between individuals and to infer an individual's origin or membership to a cultural group, dimensionality reduction techniques are routinely deployed. However, inherent (technical) difficulties such as missing or noisy data need to be accounted for when analyzing a lower dimensional representation of genotype data, and the uncertainty of such an analysis should be reported in all studies. However, to date, there exists no stability estimation technique for genotype data that can estimate this uncertainty. Results: Here, we present Pandora, a stability estimation framework for genotype data based on bootstrapping. Pandora computes an overall score to quantify the stability of the entire embedding, per-individual support values, and deploys a k-means clustering approach to assess the uncertainty of assignments to potential cultural groups. In addition to this bootstrap-based stability estimation, Pandora offers a sliding-window stability estimation for whole-genome data. Using published empirical and simulated datasets, we demonstrate the usage and utility of Pandora for studies that rely on dimensionality reduction techniques. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要