Inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers

Nature Materials(2024)

引用 0|浏览2
暂无评分
摘要
Coupling of spin and charge currents to structural chirality in non-magnetic materials, known as chirality-induced spin selectivity, is promising for application in spintronic devices at room temperature. Although the chirality-induced spin selectivity effect has been identified in various chiral materials, its Onsager reciprocal process, the inverse chirality-induced spin selectivity effect, remains unexplored. Here we report the observation of the inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers. Using spin-pumping techniques, the inverse chirality-induced spin selectivity effect enables quantification of the magnitude of the longitudinal spin-to-charge conversion driven by chirality-induced spin selectivity in different chiral polymers. By widely tuning conductivities and supramolecular chiral structures via a printing method, we found a very long spin relaxation time of up to several nanoseconds parallel to the chiral axis. Our demonstration of the inverse chirality-induced spin selectivity effect suggests possibilities for elucidating the puzzling interplay between spin and chirality, and opens a route for spintronic applications using printable chiral assemblies. The authors report the inverse effect of chiral-induced spin selectivity in an organic material.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要