Learning to Restore Compressed Point Cloud Attribute: A Fully Data-Driven Approach and A Rules-Unrolling-Based Optimization.

IEEE transactions on visualization and computer graphics(2024)

引用 0|浏览0
暂无评分
摘要
The emergence of holographic media drives the standardization of Geometry-based Point Cloud Compression (G-PCC) to sustain networked service provisioning. However, G-PCC inevitably introduces visually annoying artifacts, degrading the quality of experience (QoE). This work focuses on restoring G-PCC compressed point cloud attributes, e.g., RGB colors, to which fully data-driven and rules-unrolling-based post-processing filters are studied. At first, as compressed attributes exhibit nested blockiness, we develop a learning-based sample adaptive offset (NeuralSAO), which leverages a neural model using multiscale feature aggregation and embedding to characterize local correlations for quantization error compensation. Later, given statistically Gaussian distributed quantization noise, we suggest the utilization of a bilateral filter with Gaussian kernels to weigh neighbors by jointly considering their geometric and photometric contributions for restoration. Since local signals often present varying distributions, we propose estimating the smoothing parameters of the bilateral filter using an ultra-lightweight neural model. Such a bilateral filter with learnable parameters is called NeuralBF. The proposed NeuralSAO demonstrates the state-of-art restoration quality improvement, e.g., >20% BD-BR (Bjøntegaard delta rate) reduction over G-PCC on solid points clouds. However, NeuralSAO is computationally intensive and may suffer from poor generalization. On the other hand, although NeuralBF only achieves half of the gains of NeuralSAO, it is lightweight and exhibits impressive generalization across various samples. This comparative study between the data-driven large-scale NeuralSAO and the rules-unrolling-based small-scale NeuralBF helps to understand the capacity (i.e., performance, complexity, generalization) of underlying filters in terms of the quality restoration for compressed point cloud attribute.
更多
查看译文
关键词
Point cloud compression,attribute quality restoration,sample adaptive offset,bilateral filter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要