Tuning Chemical and Morphological Properties of Ceria Nanopowders by Mechanochemistry

Maila Danielis, Andrea Felli, Matteo Zampol, Nicolas Fonda, Philipp Bru''ner, Thomas Grehl,Erika Furlani,Stefano Maschio,Sara Colussi,Alessandro Trovarelli

ACS OMEGA(2024)

引用 0|浏览2
暂无评分
摘要
Cerium oxide powders are widely used and are of fundamental importance in catalytic pollution control and energy production due to the unique chemical properties of CeO2. Processing steps involved in catalyst preparation, such as high-temperature calcination or mechanical milling processes, can alter the morphological and chemical properties of ceria, heavily affecting its final properties. Here, we focus on the tuning of CeO2 nanopowder properties by mild- and high-energy milling processes, as the mechanochemical synthesis is gaining increasing attention as a green synthesis method for catalyst production. The textural and redox properties were analyzed by an array of techniques to follow the aggregation and comminution mechanisms induced by mechanical stresses, which are more prominent under high-energy conditions but strongly depend on the starting properties of the ceria powders. Simultaneously, the evolution of surface defects and chemical properties was followed by Raman spectroscopy and H-2 reduction tests, ultimately revealing a trade-off effect between structural and redox properties induced by the mechanochemical action. The mild-energy process appears to induce the largest enhancement in surface properties while maintaining bulk properties of the starting materials, hence confirming its effectiveness for its exploitation in catalysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要