Conformational switch of a peptide provides a novel strategy to design peptide loaded porous organic polymer for Pyroptosis pathway mediated cancer therapy

Krishnananda Chattopahyay,Snehasis Mishra,Achinta Sannigrahi,Santu Ruidas,Sujan Chatterjee, Kamalesh Roy, Deblina Mishra,Barun Kumar Maity, Rabindranath Paul,Krishna Das Saha,Asim Bhaumik

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
While peptide-based drug development is now extensively explored, this strategy does have limitations, which come from their rapid excretion from the body (or shorter half-life in the body), and vulnerability to protease-mediated degradation. To overcome these limitations, here we introduce a novel strategy for the development of a peptide-based anticancer agent using the conformation switch property of a chameleon sequence stretch, which we derived from a mycobacterium secretory protein, MPT63. Then, we loaded this peptide in a new porous organic polymer (PG-DFC-POP) synthesized using phloroglucinol and acresolderivative via condensation reaction for delivering the peptide selectively to the cancer cells. Employing an ensemble and single molecule approaches, we demonstrate that this peptide undergoes a disordered to alpha-helical conformational transition, which is triggered by a low pH environment inside cancer cells. This adopted alpha-helical conformation results in the formation of proteolysis-resistant oligomers, which show efficient membrane pore-forming activity selectively for negatively charged phospholipid which is accumulated in cancer cell membrane. Our in vitro and in vivo experimental results demonstrate that the peptide-loaded nanomaterial PG-DFC-POP-PEP 1 exhibits significant cytotoxicity in cancer cells, leading to cell death through the Pyroptosis pathway that is confirmed by monitoring numerous associated events starting from lysosome membrane damage to GSDMD-induced cell membrane demolition. We believe that this novel conformational switch-based drug design strategy has great potential in endogenous environment-responsive cancer therapy and the development of future drug candidates to mitigate cancers. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要