Enhanced Durability and Catalytic Performance of Pt–SnO2/Multi‐Walled Carbon Nanotube with Shifted d‐Band Center for Proton‐Exchange Membrane Fuel Cells

Small Structures(2024)

引用 0|浏览4
暂无评分
摘要
Worldwide, significant efforts are made to identify energy sources that can help achieve carbon neutrality and promote sustainable development. The development of a catalyst that combines durability and high performance is essential for the commercialization of proton‐exchange membrane fuel cells (PEMFCs). In a fuel cell, carbon corrosion occurs during startup and shutdown due to improper local flooding caused by inadequate water management. In this study, a Pt‐based catalyst is designed with excellent durability and high activity. Introducing a metal oxide layer modified with Pt/multi‐walled carbon nanotubes reduces the direct contact between carbon and the fuel cell environment. This helps prevent carbon corrosion and inhibits the separation, aggregation, and growth of Pt nanoparticles. Moreover, the catalyst exhibits enhanced oxygen reduction activity due to the electronic effect of the metal oxide layer that is coated on it. In this study, by implementing a carbon erosion acceleration protocol, excellent catalytic properties during a load‐cycling experiment consisting of 5,000 cycles are reported. The practical application of the developed catalyst in PEMFCs offers an effective approach to developing Pt‐group metal catalysts with exceptional activity.
更多
查看译文
关键词
accelerated stress tests,carbon corrosions,catalyst supports,proton-exchange membrane fuel cells,strong metal–support interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要