Earthquake Coda Magnitude with Distributed Acoustic Sensing at Ridgecrest, California

Peng Ye,Xin Wang

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Distributed Acoustic Sensing (DAS) has emerged as a transformative technology in recent years, effectively converting optical fibers into dense seismic arrays. Numerous studies have demonstrated the widespread applications of DAS in seismology, including earthquake detection and subsurface structure imaging. In terms of earthquake source studies using DAS, the conventional approach for determining earthquake magnitudes primarily relies on maximum amplitude measurements. However, this approach faces limitations, such as unknown cable couplings and instrument responses, single-component sensing, complex source radiation patterns, and uncommon amplitude saturation behaviors. To overcome these challenges, we propose a novel method that calculates earthquake magnitudes based on coda waves using DAS. Utilizing a 10 km-long DAS array deployed in Ridgecrest, California, we derive coda wave energy decay to estimate source amplitude terms. Our findings reveal a strong linear correlation between these estimates and seismic magnitudes estimated using broadband seismic network. Furthermore, our study provides insights into the attenuation structure beneath the DAS array, aligning well with shallow velocity structures. This study not only advances our understanding of seismic source characterization using DAS, but also paves the way for more accurate earthquake magnitude estimation using DAS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要