Understanding the Heterogeneity and Anisotropy of Permeability in Carbonate Rocks Within a Fault Network

crossref(2024)

引用 0|浏览3
暂无评分
摘要
The complexity of fault zone structure and faulting mechanisms significantly impact the permeability of fault zone rocks. Various factors, including the type and porosity of the host rock, the fault’s geometry, differential strain, the history of deformation, and the tectonic setting, can cause permeability to exhibit wide fluctuations. However, research into the permeability of complex fault zones is constrained by the scarcity of in situ measurements. Utilizing analytical relationships, laboratory tests, outcrop measurements, or numerical modeling often yields biased results, as they may not accurately represent real-world conditions. Moreover, the effects of fault branching and interconnections have not been thoroughly explored. This study compares the permeability of faulted carbonate rocks using a comprehensive database of in situ permeability tests. We investigate how a network of seven faults influenced permeability variations at different locations and depths by examining surface and subsurface data, including information from excavated tunnels. Our findings reveal that factors such as fault dips, length, fault structure, and rock characteristics can create diverse impacts on permeability. We observe permeability values in fault damage zones one to five orders of magnitude higher than those in the host rocks. The thickness and condition of damage zones shed light on the range of fault zone permeability. Furthermore, we find that faulted rocks with higher porosity and lower mechanical strength exhibit more substantial alterations in permeability. This study provides valuable insights into the behavior of faulted carbonate rocks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要