Enhancing OLED emitter efficiency through increased rigidity

RSC ADVANCES(2024)

引用 0|浏览0
暂无评分
摘要
Three new blue materials, TPI-InCz, PAI-InCz, and CN-PAI-InCz, have been developed. In the film state, TPI-InCz and PAI-InCz exhibited emission peaks at 411 and 431 nm indicating deep blue emission. CN-PAI-InCz showed a peak emission at 452 nm, within the real blue region. When these three materials were used as the emissive layer to fabricate non-doped devices, CN-PAI-InCz showed the highest current efficiency of 2.91 cd A-1, power efficiency of 1.93 lm W-1, and external quantum efficiency of 3.31%. Among the synthesized materials, CN-PAI-InCz exhibited superior charge balance due to the introduction of CN groups, as confirmed by hole-only devices and electron-only devices. PAI-InCz demonstrated fast hole mobility with a value of 1.50 x 10-3 cm2 V-1 s-1, attributed to its planar and highly rigid structure. In the resulting devices, the Commission Internationale de l'Eclairage coordinates for TPI-InCz, PAI-InCz, and CN-PAI-InCz were (0.162, 0.048), (0.0161, 0.067), and (0.155, 0.099), all indicating emission in the blue region. Three new blue materials, TPI-InCz, PAI-InCz, and CN-PAI-InCz, have been developed. Among the three materials, CN-PAI-InCz showed the highest external quantum efficiency of 3.31% with fast hole mobility of 1.50 x 10-3 cm2 V-1 s-1.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要