Advancing a Major U.S. Airline’s Practice in Flight-level Checked Baggage Prediction

Intelligent Transportation Infrastructure(2024)

引用 0|浏览0
暂无评分
摘要
Abstract In this paper, we aim to address a relevant estimation problem that aviation professionals encounter in their daily operations. Specifically, aircraft load planners require information on the expected number of checked bags for a flight several hours prior to its scheduled departure to properly palletize and load the aircraft. However, the checked baggage prediction problem has not been sufficiently studied in the literature, particularly at the flight level. Existing prediction approaches have not properly accounted for the different impacts of overestimating and underestimating checked baggage volumes on airline operations. Therefore, we propose a custom loss function, in the form of a piecewise quadratic function, which aligns with airline operations practice and utilizes machine learning algorithms to optimize checked baggage predictions incorporating the new loss function. We consider multiple linear regression, LightGBM, and XGBoost, as supervised learning algorithms. We apply our proposed methods to baggage data from a major airline and additional data from various U.S. government agencies. We compare the performance of the three customized supervised learning algorithms. We find that the two gradient boosting methods (i.e., LightGBM and XGBoost) yield higher accuracy than the multiple linear regression; XGBoost outperforms LightGBM while LightGBM requires much less training time than XGBoost. We also investigate the performance of XGBoost on samples from different categories and provide insights for selecting an appropriate prediction algorithm to improve baggage prediction practices. Our modeling framework can be adapted to address other prediction challenges in aviation, such as predicting the number of standby passengers or no-shows.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要