Daidzein protects endothelial cells against high glucose-induced injury through the dual-activation of PPARα and PPARγ.

General physiology and biophysics(2024)

引用 0|浏览2
暂无评分
摘要
Endothelial damage caused by persistent glucose and lipid metabolism disorders is the main reason of diabetic vascular diseases. Daidzein exerts positive effects on vascular dysfunction. Peroxisome proliferator-activated receptors (PPARs) regulate critically glucose and lipid metabolism. However, the interaction of daidzein to PPARs is still insufficiently explored. In this study, the cell proliferation was detected by EdU. The intrinsic activity and binding affinity of daidzein for human PPARs (hPPARs) were estimated by transactivation reporter gene test and HPLC-UV method, respectively. Daidzein significantly reversed high glucose (HG, at 30 mmol/l)-induced injury in HUVECs, which was inhibited by both PPARα and PPARγ antagonist, but no PPARβ antagonist. Daidzein selectively activated hPPARα and hPPARγ1, but weakly hPPARβ. Additionally, daidzein also bound to both hPPARα and hPPARγ1. The findings suggested that daidzein may be a PPARα and PPARγ dual-agonist. The amelioration of daidzein on HUVECs from hyperglycemia may be mediated by the activation of PPARα and PPARγ receptors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要