Weak Hopf symmetry and tube algebra of the generalized multifusion string-net model

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
We investigate the multifusion generalization of string-net ground states and lattice Hamiltonians, delving into its associated weak Hopf symmetry. For the multifusion string-net, the gauge symmetry manifests as a general weak Hopf algebra, leading to a reducible vacuum string label; the charge symmetry, serving as a quantum double of gauge symmetry, constitutes a connected weak Hopf algebra. This implies that the associated topological phase retains its characterization by a unitary modular tensor category (UMTC). The bulk charge symmetry can also be captured by a weak Hopf tube algebra. We offer an explicit construction of the weak Hopf tube algebra structure and thoroughly discuss its properties. The gapped boundary and domain wall models are extensively discussed, with these 1d phases characterized by unitary multifusion categories (UMFCs). We delve into the gauge and charge symmetries of these 1d phases, as well as the construction of the boundary and domain wall tube algebras. Additionally, we illustrate that the domain wall tube algebra can be regarded as a cross product of two boundary tube algebras. We establish the anyon condensation theory to elucidate the bulk-to-boundary and bulk-to-wall condensation phenomena from UMTCs to a UMFCs. As an application of our model, we elucidate how to interpret the defective string-net as a restricted multifusion string-net.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要