Re-yellowing of chromium-contaminated soil after reduction-based remediation: Effects and mechanisms of extreme natural conditions

Science of The Total Environment(2024)

引用 0|浏览0
暂无评分
摘要
Chromium (VI) in soil poses a significant threat to the environment and human health. Despite efforts to remediate Cr contaminated soil (Cr-soil), instances of re-yellowing have been observed over time. To understand the causes of re-yellowing as well as the influence of overdosed chemical reductant in remediating Cr-soil, experiments on excess reducing agent interference and soil re-yellowing mechanisms under different extreme conditions were conducted. The results show that the USEPA method 3060A & 7196A combined with K2S2O8 oxidation is an effective approach to eliminate interference from excess FeSO4 reducing agents. The main causes of re-yellowing include the failure of reducing agents, disruption of soil lattice, and interactions between manganese oxides and microorganisms. Under various extreme conditions simulated across the four seasons, high temperatures and drought significantly accelerated the failure of reducing agents, resulting in the poorest remediation effectiveness for Cr-soil (91.75 %). Dry-wet cycles promoted the formation of soil aggregates, negatively affecting Cr(VI) removal. While these extreme conditions caused relatively mild re-yellowing (9.46 %–16.79 %) due to minimal soil lattice damage, the potential risk of re-yellowing increases with the failure of reducing agents and the release of Cr(VI) within the lattice. Prolonged exposure to acid rain leaching and freeze-thaw cycles disrupted soil structure, leading to substantial leaching and reduction of insoluble Cr, resulting in optimal remediation effectiveness (94.58 %–97.73 %). As reducing agents gradually and the involvement of the water medium, significant re-yellowing occurred in the remediated soil (51.52 %). Mn(II) in soil enriched relevant microorganisms, and the Mn(IV)-mediated biological oxidation process was also one of the reasons for soil re-yellowing.
更多
查看译文
关键词
Extreme weather conditions,Cr pollution,Soil remediation,Re-yellowing,USEPA method 3060A
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要