Improved theoretical prediction of nanoparticle sizes with the resistive-pulse technique

PHYSICS OF FLUIDS(2024)

引用 0|浏览3
暂无评分
摘要
With the resistive-pulse technique (RPT), nanopores serve as the nanofluidic sensors of various analytes for their many physical and chemical properties. Here, we focus on the size measurement and its theoretical prediction for sub-200nm nanoparticles with RPT. Through systematical investigation of the current blockade of nanoparticles across cylindrical nanopores with simulations, Maxwell's method considering the shape coefficient and access resistances agrees well with simulation results. However, the widely used integration method of the resistance has distinct deviations in various cases. With the introduction of a correction factor beta to the integration method, our revised equations can provide good predictions for simulation results. beta shows a strong dependence on the diameter ratio (d/D) of the nanoparticle and nanopore. Following the same strategy, modified equations are provided for the accurate size prediction for nanoparticles across conical nanopores, where the integration method is the default convenient way. The correction factor beta ' relates to beta in cylindrical nanopores. beta ' exhibits independence on the pore geometry parameters and diameters of nanoparticles, but dependence on the surface charge density of conical nanopores. Our improved equations can provide theoretical predictions for the accurate size detection of 100-200nm diameter nanoparticles across cylindrical and conical nanopores.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要