Circuit QED with giant atoms coupling to left-handed superlattice metamaterials

PHYSICAL REVIEW A(2024)

引用 0|浏览4
暂无评分
摘要
Giant atoms, where the dipole approximation ceases to be valid, allow us to observe unconventional quantum optical phenomena arising from interference and time-delay effects. Most previous studies consider giant atoms coupling to conventional materials with right-handed dispersion. In this study, we first investigate the quantum dynamics of a giant atom interacting with left-handed superlattice metamaterials. Different from those right-handed counterparts, the left-handed superlattices exhibit an asymmetric band gap generated by anomalous dispersive bands and Bragg scattering bands. With the assumption that the giant atom is in resonance with the continuous dispersive energy band, spontaneous emission will undergo periodic enhancement or suppression due to the interference effect. At the resonant position, there is a significant discrepancy in the spontaneous decay rates between the upper and lower bands which arises from the differences in group velocity. Second, we explore the non-Markovian dynamics of the giant atom by considering the emitter's frequency outside the energy band, where bound states will be induced by the interference between two coupling points. By employing both analytical and numerical methods, we demonstrate that the steady atomic population will be periodically modulated, driven by variations in the size of the giant atom. The presence of asymmetric band edges leads to diverse interference dynamics. Finally, we consider the case of two identical emitters coupled to the waveguide and find that the energy within the two emitters undergoes exchange through the mechanism of Rabi oscillations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要