Enhanced spin current transmissivity in Pt/CoFe2O4 bilayers with thermally induced interfacial magnetic modification

M. Gamino, A. B. Oliveira, D. S. Maior, P. R. T. Ribeiro, F. L. A. Machado,T. J. A. Mori, M. A. Correa, F. Bohn, R. L. Rodriguez-Suarez, J. Fontcuberta, S. M. Rezende

PHYSICAL REVIEW B(2023)

引用 0|浏览0
暂无评分
摘要
We report on processes of generation of spin current and conversion into charge current in CoFe2O4/Pt bilayers by means of spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) experiments. Specifically, we explore (001) full-textured CoFe2O4 (CFO) thin films grown onto (001)-oriented SrTiO3 substrates, covered with Pt layers deposited under two different conditions: one at room temperature and another at high temperature (400 degrees C). The x-ray absorption spectroscopy measurements indicate that the Pt layer deposited at high temperature induces an interfacial magneticlike phase (Fe,Co)-Pt alloy, which influences the magnetic behavior of the structure and is responsible for the enhancement of the spin transmission at the interface. By analyzing the SMR data, we conclude that collinear and noncollinear magnetic domains coexist at the CFO-(Fe,Co)-Pt interface. By combining the data from the SMR and SSE measurements, we obtain the ratios between the values of the spin Hall angle (theta SH) and between the ones of the spin-mixing conductance (g up arrow down arrow that while the value of theta SH decreases by one-half with the heat treatment, the value of g up arrow down arrow one order of magnitude. We interpret the increase of g up arrow down arrow eff in terms of unexpected magnetic reconstructions, which produce an enhancement of the magnetic moment arisen at the interface. Since the spin-mixing conductance determines the efficiency of the spin current transmission through the interface, the spinel ferrite cobalt in contact with a normal metal with a suitable heat treatment becomes a promising material for spintronics device applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要