Enhanced beam-beam modeling to include longitudinal variation during weak-strong simulation

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Beam-beam interactions pose substantial challenges in the design and operation of circular colliders, significantly affecting their performance. In particular, the weak-strong simulation approach is pivotal for investigating single-particle dynamics during the collider design phase. This paper evaluates the limitations of existing models in weak-strong simulations, noting that while they accurately account for energy changes due to slingshot effects, they fail to incorporate longitudinal coordinate changes (z-variation). To address this gap, we introduce two novel transformations that enhance Hirata's original framework by including both z-variation and slingshot effect-induced energy changes. Through rigorous mathematical analysis and extensive weak-strong simulation studies, we validate the efficacy of these enhancements in achieving a more precise simulation of beam-beam interactions. Our results reveal that although z-variation constitutes a higher-order effect and does not substantially affect the emittance growth rate within the specific design parameters of the Electron-Ion Collider (EIC), the refined model offers improved accuracy, particularly in scenarios involving the interaction between beam-beam effects and other random diffusion processes, as well as in simulations incorporating realistic lattice models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要