Water management and heat integration in direct air capture systems

Nature Chemical Engineering(2024)

引用 0|浏览2
暂无评分
摘要
Water plays a pivotal role in direct air capture technologies, impacting materials, regeneration processes and product streams. CO 2 removal methods, including absorption, adsorption and electrochemical techniques, encounter challenges associated with water, thus reducing their efficacy. Water fluxes into and out of aqueous solvents affect the concentration and overall capture performance. Solid adsorbents co-adsorb water in greater quantities than CO 2 and will require effective strategies to address the substantial energy penalty associated with water desorption each cycle. Water-management strategies are imperative for economic viability and minimizing the environmental impact, but the high energy intensity necessitates heat recovery techniques. Feed dehydration can be combined with strategic heat integration of process streams and standard recovery techniques for front-end water management. For back-end approaches, mechanical vapor compression is a viable solution for coupling heat integration with water management, and we highlight potential heat recovery benefits of three implementation methods. Further research into variable climate conditions and water quality impacts is essential for the success of direct air capture technologies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要