The numerical analysis in heat transfer, fluid flow, and irreversibility of a pin-fin heatsink under the ultrasonic vibration with different transducer power assignment scenarios

THERMAL SCIENCE AND ENGINEERING PROGRESS(2024)

引用 0|浏览1
暂无评分
摘要
The hydrothermal performance and entropy generation rate in a pin-fin heatsink were numerically investigated under different vibration transducer power distribution scenarios between 11 transducers located at 3 walls of the heatsink. Two cases were investigated; Case#A and Case#B which are different in 3 transducer locations on one wall of the heatsink. The highest convection coefficient (h) in Case#A was obtained for a variable power scenario, which escalated pressure drop (Delta P) by 91.94%. However, the highest h in Case#B was obtained for the constant power scenario. In addition, h, average temperature of CPU, and thermal resistance factor in Case#A are 5.84% higher than, 0.41% lower than, and 5.34% lower than those in Case#B. The PEC factor for Case#A is higher than unity (1.31) only under the constant power scenario, while the PEC of Case#B is higher than unity under different studied scenarios. Frictional irreversibility ( Sfr) for Case#A was obtained as 1.45-74.56% higher than that for Case#B due to the swirl flow generated by the high-power transducers and creating the huge velocity gradients in Case#A. Nevertheless, the high flow mixing in Case#A leads to reducing the temperature gradients against Case#B, thereby thermal irreversibility ( Sth) in Case#A is almost 7.05-19.69% lower than that of Case#B.
更多
查看译文
关键词
Heat transfer,Irreversibility analysis,Numerical analysis,Pin-fin heatsink,Ultrasonic vibration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要