Fabrication of spatially-variable heterostructured CoCrFeMnNi high entropy alloy by laser processing

Materials Science and Engineering: A(2024)

引用 0|浏览5
暂无评分
摘要
This study investigates the fabrication of spatially-variable heterostructured CoCrFeMnNi high entropy alloy (HEA) using pulsed laser processing. Two distinct fabrication approaches, involving single-(SP) and double-sided (DP) laser passes, were employed. Microstructural characterization through electron backscatter diffraction revealed significant differences. SP-HEA exhibited a spatially heterogeneous microstructure with coarse columnar grains, while DP-HEA displayed a sandwich-like structure with fine equiaxed recrystallized grains. Microhardness mapping demonstrated a gradient trend in SP-HEA, with the fusion zone exhibiting the lowest hardness and the base material the highest. In contrast, DP-HEA displayed an overall soft-hard-soft structure. Tensile testing revealed distinct mechanical responses, with DP-HEA exhibiting higher strength and ductility compared to SP-HEA. The improved performance of DP-HEA was attributed to a more uniform distribution of heterogeneity, minimizing mechanical interactions between soft and hard domains. Moreover, corrosion resistance was assessed, showing that DP-HEA outperformed SP-HEA and non-processed material, suggesting superior stability in corrosive environments. These findings highlight the profound influence of fabrication parameters on the microstructure and mechanical properties of spatially-variable heterostructured HEAs. The study contributes valuable insights for material design and applications based on CoCrFeMnNi high entropy alloys.
更多
查看译文
关键词
CoCrFeMnNi high entropy alloy,Heterostructures,Pulsed laser processing,Mechanical properties testing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要