Ab initio modelling of quantum dot qubits: Coupling, gate dynamics and robustness versus charge noise

arxiv(2024)

Cited 0|Views5
No score
Abstract
Electron spins in semiconductor devices are highly promising building blocks for quantum processors (QPs). Commercial semiconductor foundries can create QPs using the same processes employed for conventional chips, once the QP design is suitably specified. There is a vast accessible design space; to identify the most promising options for fabrication, one requires predictive modeling of interacting electrons in real geometries and complex non-ideal environments. In this work we explore a modelling method based on real-space grids, an ab initio approach without assumptions relating to device topology and therefore with wide applicability. Given an electrode geometry, we determine the exchange coupling between quantum dot qubits, and model the full evolution of a √(SWAP) gate to predict qubit loss and infidelity rates for various voltage profiles. Moreover we explore the impact of unwanted charge defects (static and dynamic) in the environment, and test robust pulse sequences. As an example we exhibit a sequence correcting both systematic errors and (unknown) charge defects, observing an order of magnitude boost in fidelity. The technique can thus identify the most promising device designs for fabrication, as well as bespoke control sequences for each such device.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined