Probabilistic seasonal precipitation forecasts using quantiles of ensemble forecasts

Stochastic Environmental Research and Risk Assessment(2024)

引用 0|浏览0
暂无评分
摘要
Seasonal precipitation forecasting is vital for weather-sensitive sectors. Global Circulation Models (GCM) routinely produce ensemble Seasonal Climate Forecasts (SCFs) but suffer from issues like low forecast resolution and skills. To address these issues in this study, we introduce a post-processing method, Quantile Ensemble Bayesian Model Averaging (QEBMA). It utilises quantiles from a GCM ensemble forecast to create a pseudo-ensemble forecast. Through their reasonable linear relationships with observations, each pseudo-member connects a hurdle distribution with a point mass at zero for dry months and a gamma distribution for wet months. These distributions are mixed to construct a forecast probability distribution with their weights, proportional to the quantiles’ historical forecast performance. QEBMA is applied to three GCMs, including GloSea5 from the United Kingdom, ECMWF from Europe and ACCESS-S1 from Australia, for monthly precipitation forecasts in 32 locations across four climate zones in Australia. Leave-one-month-out cross-validation results illustrate that QEBMA enhances forecast skills compared to raw GCMs and other post-processing techniques, including quantile mapping and Extended Copula Post-Processing (ECPP), for forecast lead time of 0 to 2 months, based on five metrics. The skill improvements achieved by QEBMA are often statistically significant, particularly when compared to raw GCM forecasts across the 32 study locations. Among these post-processing models, only QEBMA consistently outperforms the SCF benchmark climatology, offering a promising alternative for improving seasonal precipitation forecasts.
更多
查看译文
关键词
Probabilistic forecast,Seasonal forecast,Monthly precipitation,Bayesian model averaging,Deterministic forecast,Quantile
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要