Mode-resolved thermometry of trapped ion with Deep Learning

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
In trapped ion system, accurate thermometry of ion is crucial for evaluating the system state and precisely performing quantum operations. However, when the motional state of a single ion is far away from the ground state, the spatial dimension of the phonon state sharply increases, making it difficult to realize accurate and mode-resolved thermometry with existing methods. In this work, we apply deep learning for the first time to the thermometry of trapped ion, providing an efficient and mode-resolved method for accurately estimating large mean phonon numbers. Our trained neural network model can be directly applied to other experimental setups without retraining or post-processing, as long as the related parameters are covered by the model's effective range, and it can also be conveniently extended to other parameter ranges. We have conducted experimental verification based on our surface trap, of which the result has shown the accuracy and efficiency of the method for thermometry of single ion under large mean phonon number, and its mode resolution characteristic can make it better applied to the characterization of system parameters, such as evaluating cooling effectiveness, analyzing surface trap noise.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要