A silver and manganese dioxide composite with oxygen vacancies as a high-performance cathode material for aqueous zinc-ion batteries

Yun Wang, Tengfei Wang, Wenjing Zhang,Liangjun Li,Xiaoxia Lv,Hua Wang

DALTON TRANSACTIONS(2024)

引用 0|浏览0
暂无评分
摘要
Aqueous zinc ion batteries (AZIBs) are regarded as a promising alternative for energy storage due to their safety, cost-effectiveness and environmental friendliness. Manganese dioxide is considered a promising cathode material for energy storage because of its abundant reserves and high energy density. However, its inherent low electronic conductivity and limited cycling performance due to structural instability hinder its further development. Herein, a silver and manganese dioxide composite (Ag@MnO2) enriched with oxygen vacancies was prepared by a simple liquid-phase reduction method. The introduction of silver particles facilitates the improvement of electrical conductivity, and the incorporation of oxygen vacancies helps change the surface properties of manganese dioxide, providing additional active sites for ion transport, enhancing the overall electrochemical kinetics, and further improving the battery performance. As a result, the Ag@MnO2 cathode exhibits an astonishingly high capacity of 353 mAh g-1 at a current density of 0.1 A g-1 and a capacity retention of 78% after 1500 cycles. Additionally, electrochemical and structural analyses have revealed that the Ag@MnO2 cathode undergoes a reversible and stable process of H+ and Zn2+ insertion/extraction. An oxygen vacancy-enriched silver and manganese dioxide composite was prepared by liquid-phase reduction method, which can be used to construct aqueous zinc ion batteries and exhibits excellent capacity and cycling performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要