Understanding the basis of thermostability for enzyme "Nanoluc" towards designing industry-competent engineered variants.

Adwaita S R Nair, Arup Samanta,Saugata Hazra

Journal of biomolecular structure & dynamics(2024)

引用 0|浏览1
暂无评分
摘要
As a leading contender in the study of luminescence, nanoluciferase has recently attracted attention and proven effective in a wide variety of research areas. Although numerous attempts have been made to improve activity, there has yet to be a thorough exploration of further possibilities to improve thermostability. In this study, protein engineering in tandem with molecular dynamics simulation at various temperatures (300 K, 400 K, 450 K and 500 K) was used to improve our understanding of nanoluciferase dynamics and identification of factors that could significantly enhance the thermostability. Based on these, three novel mutations have been narrowed down, which were hypothesised to improve thermostability. Root mean square deviation and root mean square fluctuation studies confirmed higher stability of mutant at high temperature. Solvent-accessible surface area and protein unfolding studies revealed a decreased tendency of mutant to unfold at higher temperatures. Further free energy landscape and principal component analysis was adapted to get deeper insights into the thermodynamic and structural behavior of these proteins at elevated temperature. Thus, this study provides a deeper insight into the dynamic factors for thermostability and introduces a novel, enhanced nanoluciferase candidate with potential use in industry.Communicated by Ramaswamy H. Sarma.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要