Follow My Instruction and Spill the Beans: Scalable Data Extraction from Retrieval-Augmented Generation Systems

Zhenting Qi,Hanlin Zhang,Eric Xing,Sham Kakade, Himabindu Lakkaraju

CoRR(2024)

引用 0|浏览17
暂无评分
摘要
Retrieval-Augmented Generation (RAG) improves pre-trained models by incorporating external knowledge at test time to enable customized adaptation. We study the risk of datastore leakage in Retrieval-In-Context RAG Language Models (LMs). We show that an adversary can exploit LMs' instruction-following capabilities to easily extract text data verbatim from the datastore of RAG systems built with instruction-tuned LMs via prompt injection. The vulnerability exists for a wide range of modern LMs that span Llama2, Mistral/Mixtral, Vicuna, SOLAR, WizardLM, Qwen1.5, and Platypus2, and the exploitability exacerbates as the model size scales up. Extending our study to production RAG models GPTs, we design an attack that can cause datastore leakage with a 100 at most 2 queries, and we extract text data verbatim at a rate of 41 book of 77,000 words and 3 GPTs with only 100 queries generated by themselves.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要