Anisotropy of the R1/T2* value dependent on white matter fiber orientation with respect to the B0 field

Magnetic resonance imaging(2024)

引用 0|浏览0
暂无评分
摘要
The R1 (1/T1) map divided by the T2* map (R1/T2* map) draws attention as a high-resolution myelin-related map. However, both R1 and R2* (1/T2*) values demonstrate anisotropy dependent on the white matter (WM) fiber orientation with respect to the static magnetic (B0) field. Therefore, this study primarily aimed to investigate the comprehensive impact of these angular-dependent anisotropies on the R1/T2* value.This study enrolled 10 healthy human volunteers (age = 25 ± 1.3) on the 3.0 T MRI system. For R1/T2* map calculation, whole brain R1 and T2* maps were repeatedly obtained in three head tilt positions by magnetization-prepared two rapid gradient echoes and multiple spoiled gradient echo sequences, respectively. Afterward, all maps were spatially normalized and registered to the Johns Hopkins University WM atlas. R1/T2*, R1, and R2* values were binned for fiber orientation related to the B0 field, which was estimated from diffusion-weighted echo-planar imaging data with 3° intervals, to investigate angular-dependent anisotropies in vivo.A larger change in the R1/T2* value in the global WM region as a function of fiber orientation with respect to the B0 field was observed compared to the R1 and R2* values alone. The minimum R1/T2* value at the near magic-angle range was 18.86% lower than the maximum value at the perpendicular angle range. Furthermore, R1/T2* values in the corpus callosum tract and the right and left cingulum cingulate gyrus tracts changed among the three head tilt positions due to fiber orientation changes. In conclusion, the R1/T2* value demonstrates distinctive and complicated angular-dependent anisotropy indicating the trends of both R1 and R2* values and may provide supplemental information for detecting slight changes in the microstructure of myelin and axons.
更多
查看译文
关键词
Fiber orientation,White matter,Relaxation times,Myelin,Ratio mapping,R1/T2*
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要