Reinforcement Learning with Dynamic Multi-Reward Weighting for Multi-Style Controllable Generation

CoRR(2024)

引用 0|浏览1
暂无评分
摘要
Style is an integral component of text that expresses a diverse set of information, including interpersonal dynamics (e.g. formality) and the author's emotions or attitudes (e.g. disgust). Humans often employ multiple styles simultaneously. An open question is how large language models can be explicitly controlled so that they weave together target styles when generating text: for example, to produce text that is both negative and non-toxic. Previous work investigates the controlled generation of a single style, or else controlled generation of a style and other attributes. In this paper, we expand this into controlling multiple styles simultaneously. Specifically, we investigate various formulations of multiple style rewards for a reinforcement learning (RL) approach to controlled multi-style generation. These reward formulations include calibrated outputs from discriminators and dynamic weighting by discriminator gradient magnitudes. We find that dynamic weighting generally outperforms static weighting approaches, and we explore its effectiveness in 2- and 3-style control, even compared to strong baselines like plug-and-play model. All code and data for RL pipelines with multiple style attributes will be publicly available.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要