Microbial communities exhibit distinct diversities and assembly mechanisms in rainwater and tap-water storage systems.

Sihang Liu,Siqing Xia, Xiaodong Zhang,Xucheng Cai, Jinhao Yang,Yuxing Hu,Shuang Zhou,Hong Wang

Water research(2024)

引用 0|浏览0
暂无评分
摘要
Roof-harvested rainwater stored for potable and nonpotable usages represent a clean and sustainable water supply resource. However, the microbial dynamics and mechanisms of community assembly in long-termed operated rainwater storage systems remain elusive. In this study, characteristics of microbial communities in different habitats were systematically compared within rainwater and tap-water simulated storage systems (SWSSs) constructed with different tank materials (PVC, stainless steel and cement). Distinct microbial communities were observed between rainwater and tap-water SWSSs for both water and biofilm samples (ANOSIM, p < 0.05), with lower diversity indexes noted in rainwater samples. Notably, a divergent potential pathogen profile was observed between rainwater and tap-water SWSSs, with higher relative abundances of potential pathogens noted in rainwater SWSSs. Moreover, tank materials had a notable impact on microbial communities in rainwater SWSSs (ANOSIM, p < 0.05), rather than tap-water SWSSs, illustrating the distinct interplay between water chemistry and engineering factors in shaping the SWSS microbiomes. Deterministic processes contributed predominantly to the microbial community assembly in cement rainwater SWSSs and all tap-water SWSSs, which might be ascribed to the high pH levels in cement rainwater SWSSs and low-nutrient levels in all tap-water SWSSs, respectively. However, microbial communities in the PVC and stainless-steel rainwater SWSSs were mainly driven by stochastic processes. Overall, the results provided insights to the distinct microbial assembly mechanisms and potential health risks in stored roof-harvested rainwater, highlighting the importance of developing tailored microbial management strategies for the storage and utilization of rainwater.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要