Metal-Organic-Framework-Derived Bromine and Nitrogen Dual-Doped Porous Carbon for CO2 Photocycloaddition Reaction

INORGANIC CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
The cycloaddition of CO2 with epoxides driven by light irradiation is an intriguing approach to preparing cyclic carbonates. However, it remains a great challenge to achieve high photocatalytic efficiency in the absence of a cocatalyst. Herein, we explored a metal-organic-framework (MOF)-templated pyrolysis strategy to prepare uniform bromine ions/nitrogen-codoped carbon materials (Br-CN) as low-cost photocatalysts for CO2 cycloaddition. The optimal catalyst Br-CN-1-550 can be used as a photocatalyst to catalyze CO2 cycloaddition, remarkably reducing the energy consumption. As a result of its benefits of high photothermal efficiency and rich nucleophilic sites (Br ions), BN-CN-1-550 affords a 9 times higher yield of 4-(chloromethyl)-1,3-dioxolan-2-one than that of the ZIF-8-derived CN under cocatalyst-free conditions and light irradiation (300 mW center dot cm(-2) full-spectrum irradiation, 10 h). This strategy provides a cost-effective way to obtain cyclic carbonate under cocatalyst-free conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要