Deep photonic network platform enabling arbitrary and broadband optical functionality

Ali Najjar Amiri, Aycan Deniz Vit,Kazim Gorgulu,Emir Salih Magden

Nature Communications(2024)

引用 0|浏览0
暂无评分
摘要
Expanding applications in optical communications, computing, and sensing continue to drive the need for high-performance integrated photonic components. Designing these on-chip systems with arbitrary functionality requires beyond what is possible with physical intuition, for which machine learning-based methods have recently become popular. However, computational demands for physically accurate device simulations present critical challenges, significantly limiting scalability and design flexibility of these methods. Here, we present a highly-scalable, physics-informed design platform for on-chip optical systems with arbitrary functionality, based on deep photonic networks of custom-designed Mach-Zehnder interferometers. Leveraging this platform, we demonstrate ultra-broadband power splitters and a spectral duplexer, each designed within two minutes. The devices exhibit state-of-the-art experimental performance with insertion losses below 0.66 dB, and 1-dB bandwidths exceeding 120 nm. This platform provides a tractable path towards systematic, large-scale photonic system design, enabling custom power, phase, and dispersion profiles for high-throughput communications, quantum information processing, and medical/biological sensing applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要