Rice ILI atypical bHLH transcription factors antagonize OsbHLH157/OsbHLH158 during brassinosteroid signaling

Mingqian Liu,Mingmin Lu, Ziwei Zhao, Qin Luo,Feng Liu,Jing Zhao,Yubing He,Yanan Tian,Huadong Zhan

PLANT PHYSIOLOGY(2024)

引用 0|浏览2
暂无评分
摘要
Brassinosteroids (BRs) are a group of steroid hormones that play crucial roles in plant growth and development. Atypical bHLH transcription factors that lack the basic region for DNA binding have been implicated in BR signaling. However, the underlying mechanisms of atypical bHLHs in regulation of rice (Oryza sativa) BR signaling are still largely unknown. Here, we describe a systematic characterization of INCREASED LEAF INCLINATION (ILI) subfamily atypical bHLH transcription factors in rice. A total of 8 members, ILI1 to ILI8, with substantial sequence similarity were retrieved. Knockout and overexpression analyses demonstrated that these ILIs play unequally redundant and indispensable roles in BR-mediated growth and development in rice, with a more prominent role for ILI4 and ILI5. The ili3/4/5/8 quadruple and ili1/3/4/7/8 quintuple mutants displayed tremendous BR-related defects with severe dwarfism, erect leaves, and sterility. Biochemical analysis showed that ILIs interact with OsbHLH157 and OsbHLH158, which are also atypical bHLHs and have no obvious transcriptional activity. Overexpression of OsbHLH157 and OsbHLH158 led to drastic BR-defective growth, whereas the osbhlh157 osbhlh158 double mutant developed a typical BR-enhanced phenotype, indicating that OsbHLH157 and OsbHLH158 play a major negative role in rice BR signaling. Further transcriptome analyses revealed opposite effects of ILIs and OsbHLH157/OsbHLH158 in regulation of downstream gene expression, supporting the antagonism of ILIs and OsbHLH157/OsbHLH158 in maintaining the balance of BR signaling. Our results provide insights into the mechanism of BR signaling and plant architecture formation in rice. INCREASED LEAF INCLINATION atypical bHLH transcription factors play indispensable roles in maintaining rice architecture through brassinosteroid signaling by counteracting OsbHLH157 and OsbHLH158.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要