Neural Network Approaches for Parameterized Optimal Control

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
We consider numerical approaches for deterministic, finite-dimensional optimal control problems whose dynamics depend on unknown or uncertain parameters. We seek to amortize the solution over a set of relevant parameters in an offline stage to enable rapid decision-making and be able to react to changes in the parameter in the online stage. To tackle the curse of dimensionality arising when the state and/or parameter are high-dimensional, we represent the policy using neural networks. We compare two training paradigms: First, our model-based approach leverages the dynamics and definition of the objective function to learn the value function of the parameterized optimal control problem and obtain the policy using a feedback form. Second, we use actor-critic reinforcement learning to approximate the policy in a data-driven way. Using an example involving a two-dimensional convection-diffusion equation, which features high-dimensional state and parameter spaces, we investigate the accuracy and efficiency of both training paradigms. While both paradigms lead to a reasonable approximation of the policy, the model-based approach is more accurate and considerably reduces the number of PDE solves.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要