Model-Based Prediction of Irinotecan-Induced Grade 4 Neutropenia in Cancer Patients: Influence of Incorporating Germline Genetic Factors in the Model

CLINICAL PHARMACOLOGY & THERAPEUTICS(2024)

引用 0|浏览0
暂无评分
摘要
Neutropenia is the major dose-limiting toxicity of irinotecan-based therapy. The objective of this study was to assess whether inclusion of germline genetic variants into a population pharmacokinetic/pharmacodynamic model can improve prediction of irinotecan-induced grade 4 neutropenia and identify novel variants of clinical value. A semimechanistic population pharmacokinetic/pharmacodynamic model was used to predict neutrophil response over time in 197 patients receiving irinotecan. Covariate analysis was performed for demographic/clinical factors and 4,781 genetic variants in 84 drug response- and toxicity-related genes to identify covariates associated with neutrophil response. We evaluated the predictive value of the model for grade 4 neutropenia reflecting different clinical scenarios of available data on identified demographic/clinical covariates, baseline and post-treatment absolute neutrophil counts (ANCs), individual pharmacokinetics, and germline genetic variation. Adding 8 genetic identified covariates (rs10929302 (UGT1A1), rs1042482 (DPYD), rs2859101 (HLA-DQB3), rs61754806 (NR3C1), rs9266271 (HLA-B), rs7294 (VKORC1), rs1051713 (ALOX5), and ABCB1 rare variant burden) to a model using only baseline ANCs improved prediction of irinotecan-induced grade 4 neutropenia from area under the receiver operating characteristic curve (AUC-ROC) of 50-64% (95% confidence interval (CI), 54-74%). Individual pharmacokinetics further improved the prediction to 74% (95% CI, 64-84%). When weekly ANC was available, the identified covariates and individual pharmacokinetics yielded no additional contribution to the prediction. The model including only ANCs at baseline and at week 1 achieved an AUC-ROC of 78% (95% CI, 69-88%). Germline DNA genetic variants may contribute to the prediction of irinotecan-induced grade 4 neutropenia when incorporated into a population pharmacokinetic/pharmacodynamic model. This approach is generalizable to drugs that induce neutropenia and ultimately allows for personalized intervention to enhance patient safety.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要