Loss of function in RBBP5 results in a syndromic neurodevelopmental disorder associated with microcephaly

biorxiv(2024)

引用 0|浏览4
暂无评分
摘要
Purpose: Epigenetic dysregulation has been associated with many inherited disorders. RBBP5 encodes a core member of the protein complex that methylates histone 3 lysine-4 (H3K4) and has not been implicated in human disease. Methods: We identify five unrelated individuals with de novo heterozygous pathogenic variants in RBBP5. Three truncating and two missense variants were identified in probands with neurodevelopmental symptoms including global developmental delay, intellectual disability, microcephaly, and short stature. Here, we investigate the pathogenicity of the variants through protein structural analysis and transgenic Drosophila models. Results: Both missense p.T232I and p.E296D variants affect evolutionarily conserved amino acids and are expected to interfere with the interface between RBBP5 and the histones. In Drosophila, ubiquitous overexpression of human RBBP5 is lethal in the larval developmental stage. Loss of Rbbp5 leads to a reduction in brain size, and the human reference, p.T232I, or p.E296D variant transgenes fail to rescue loss of Rbbp5. Expression of either missense variant in an Rbbp5 null background results in a less severe microcephaly phenotype than the human reference, indicating both p.T232I and p.E296D variants are loss-of-function alleles. Conclusion: De novo heterozygous variants in RBBP5 are associated with a syndromic neurodevelopmental disorder. ### Competing Interest Statement The Department of Molecular and Human Genetics at Baylor College of Medicine receives revenue from clinical genetic testing conducted at Baylor Genetics Laboratories.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要