From cracks to secondary microplastics - surface characterization of polyethylene terephthalate (PET) during weathering.

Chemosphere(2024)

引用 0|浏览1
暂无评分
摘要
Secondary microplastics are a product of the fragmentation of plastic debris. Despite concerns regarding the omnipresence of microplastics in the environment, knowledge about the mechanics of their actual formation is still limited. Fragmentation is usually linked to weathering, which alters the properties of the plastic and allows fragmentation to occur. Therefore, in this study, polyethylene terephthalate (PET) samples were exposed to artificial UV light or a combination of UV light and water for a total of three months to simulate natural weathering. The samples included three forms of PET with different production histories: pellets, yarns, and films. The surface alterations to the samples during weathering were characterized using scanning electron microscopy and Raman spectroscopy. Results indicated that the three different types of PET developed markedly different surface defects and also exhibited signs of weathering within different time frames. Differences were also found between samples exposed only to UV and those exposed to UV and submerged in water. In water, the first surface changes were spotted within 30 days of initial submersion and later developed into an organized crack network. Upon the introduction of mild mechanical forces, pieces of the weathered surface started to delaminate. The fragments from films had an elongated shape with a median size of 16.1 × 2.1 × 1.8 μm, resembling a fibre. If the weathered surface of a film were to detach completely, it could create 1.4-7.9 million microplastic fragments/cm2. For pellets, this number would range between 0.4 and 2.2 million microplastics/cm2. In addition to particle formation by surface delamination, particles also emerged on the weathered surfaces of all studied samples, presenting another possible source of micro-sized particles during weathering. Overall, the results of this work show that the weathering of plastics and the formation of microplastics are heavily influenced not only by the weathering mechanism but also by the type and production history of the polymers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要