Ultrauniform, strong, and ductile 3D-printed titanium alloy through bifunctional alloy design.

Science (New York, N.Y.)(2024)

引用 0|浏览2
暂无评分
摘要
Coarse columnar grains and heterogeneously distributed phases commonly form in metallic alloys produced by three-dimensional (3D) printing and are often considered undesirable because they can impart nonuniform and inferior mechanical properties. We demonstrate a design strategy to unlock consistent and enhanced properties directly from 3D printing. Using Ti-5Al-5Mo-5V-3Cr as a model alloy, we show that adding molybdenum (Mo) nanoparticles promotes grain refinement during solidification and suppresses the formation of phase heterogeneities during solid-state thermal cycling. The microstructural change because of the bifunctional additive results in uniform mechanical properties and simultaneous enhancement of both strength and ductility. We demonstrate how this alloy can be modified by a single component to address unfavorable microstructures, providing a pathway to achieve desirable mechanical characteristics directly from 3D printing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要