Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattices for THz Generation.

Ruolin Chen,Xuefei Li, Hao Du, Jianfeng Yan, Chongtao Kong,Guipeng Liu,Guangjun Lu,Xin Zhang, Shuxiang Song,Xinhui Zhang,Linsheng Liu

Nanomaterials(2024)

引用 0|浏览2
暂无评分
摘要
The low-temperature-grown InGaAs (LT-InGaAs) photoconductive antenna has received great attention for the development of highly compact and integrated cheap THz sources. However, the performance of the LT-InGaAs photoconductive antenna is limited by its low resistivity and mobility. The generated radiated power is much weaker compared to the low-temperature-grown GaAs-based photoconductive antennas. This is mainly caused by the low abundance of excess As in LT-InGaAs with the conventional growth mode, which inevitably gives rise to the formation of As precipitate and alloy scattering after annealing. In this paper, the migration-enhanced molecular beam epitaxy technique is developed to grow high-quality (InAs)m/(GaAs)n short-period superlattices with a sharp interface instead of InGaAs on InP substrate. The improved electron mobility and resistivity at room temperature (RT) are found to be 843 cm2/(V·s) and 1648 ohm/sq, respectively, for the (InAs)m/(GaAs)n short-period superlattice. The band-edge photo-excited carrier lifetime is determined to be ~1.2 ps at RT. The calculated photocurrent intensity, obtained by solving the Maxwell wave equation and the coupled drift-diffusion/Poisson equation using the finite element method, is in good agreement with previously reported results. This work may provide a new approach for the material growth towards high-performance THz photoconductive antennas with high radiation power.
更多
查看译文
关键词
photoconductive materials,migration-enhanced epitaxy,short-period superlattices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要