Optimizing Clinical Cardiac MRI Workflow through Single Breath-Hold Compressed Sensing Cine: An Evaluation of Feasibility and Efficiency.

Journal of Clinical Medicine(2024)

引用 0|浏览0
暂无评分
摘要
BACKGROUND:Although compressed sensing (CS) accelerated cine holds immense potential to replace conventional cardiovascular magnetic resonance (CMR) cine, how to use CS-based cine appropriately during clinical CMR examinations still needs exploring. METHODS:A total of 104 patients (46.5 ± 17.1 years) participated in this prospective study. For each participant, a balanced steady state free precession (bSSFP) cine was acquired as a reference, followed by two CS accelerated cine sequences with identical parameters before and after contrast injection. Lastly, a CS accelerated cine sequence with an increased flip angle was obtained. We subsequently compared scanning time, image quality, and biventricular function parameters between these sequences. RESULTS:All CS cine sequences demonstrated significantly shorter acquisition times compared to bSSFPref cine (p < 0.001). The bSSFPref cine showed higher left ventricular ejection fraction (LVEF) than all CS cine sequences (all p < 0.001), but no significant differences in LVEF were observed among the three CS cine sequences. Additionally, CS cine sequences displayed superior global image quality (p < 0.05) and fewer artifacts than bSSFPref cine (p < 0.005). Unenhanced CS cine and enhanced CS cine with increased flip angle showed higher global image quality than other cine sequences (p < 0.005). CONCLUSION:Single breath-hold CS cine delivers precise biventricular function parameters and offers a range of benefits including shorter scan time, better global image quality, and diminished motion artifacts. This innovative approach holds great promise in replacing conventional bSSFP cine and optimizing the CMR examination workflow.
更多
查看译文
关键词
cardiac magnetic resonance,compressed sensing,flip angle,examination workflow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要