Anatomically-Controllable Medical Image Generation with Segmentation-Guided Diffusion Models

CoRR(2024)

引用 0|浏览3
暂无评分
摘要
Diffusion models have enabled remarkably high-quality medical image generation, which can help mitigate the expenses of acquiring and annotating new images by supplementing small or imbalanced datasets, along with other applications. However, these are hampered by the challenge of enforcing global anatomical realism in generated images. To this end, we propose a diffusion model for anatomically-controlled medical image generation. Our model follows a multi-class anatomical segmentation mask at each sampling step and incorporates a random mask ablation training algorithm, to enable conditioning on a selected combination of anatomical constraints while allowing flexibility in other anatomical areas. This also improves the network's learning of anatomical realism for the completely unconditional (unconstrained generation) case. Comparative evaluation on breast MRI and abdominal/neck-to-pelvis CT datasets demonstrates superior anatomical realism and input mask faithfulness over state-of-the-art models. We also offer an accessible codebase and release a dataset of generated paired breast MRIs. Our approach facilitates diverse applications, including pre-registered image generation, counterfactual scenarios, and others.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要