Probing magnetism in moiré heterostructures with quantum twisting microscopes

Fabian Pichler, Wilhelm Kadow,Clemens Kuhlenkamp,Michael Knap

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Spin-ordered states close to metal-insulator transitions are poorly understood theoretically and challenging to probe in experiments. Here, we propose that the quantum twisting microscope, which provides direct access to the energy-momentum resolved spectrum of single-particle and collective excitations, can be used as a novel tool to distinguish between different types of magnetic order. To this end, we calculate the single-particle spectral function and the dynamical spin-structure factor for both a ferromagnetic and antiferromagnetic generalized Wigner crystal formed in fractionally filled moiré superlattices of transition metal dichalcogenide heterostructures. We demonstrate that magnetic order can be clearly identified in these response functions. Furthermore, we explore signatures of quantum phase transitions in the quantum twisting microscope response. We focus on the specific case of triangular moiré lattices at half filling, which have been proposed to host a topological phase transition between a chiral spin liquid and a 120 degree ordered state. Our work demonstrates the potential for quantum twisting microscopes to characterize quantum magnetism in moiré heterostructures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要